
Learning Temporal Properties over Data Streams
Samuel Huang, Rance Cleaveland

Department of Computer Science

S
I Data streams are pervasive!

I Many result from outputs of structured processes

(a) Software engineering (b) Metabolic pathways

I Question: Can we reason about a process’s internal structure
via reasoning over these outputs?

E E
I Pilot study [1]: real-time recovery of invariants from execution

traces of known programs in the automotive domain.

I Used combination of data mining-based techniques [2] and
Instrument-Based Verification (IBV) for discovering rules
based on set of test cases (input output pairs) from a
Matlab/Simulink model:

Convert
Invariants to

Monitor Models

Generate
Test Cases

Infer
Invariants

Instrument Design
Model with

Monitor Models

Valid
Requirements

Design
Model

terminate

I Allowed for verification of specifications that could be
represented as:

a ∧ b ∧ c ∧ . . . → α ∧ β ∧ γ ∧ . . .

I Incorporated notions of a rule’s support and confidence to select
significant and accurate rules. The approach was shown to be
robust to noise, and allowed for detection of incorrect
implementations/specifications.

E E
I Previous work towards mining properties, (e.g. [5]), but all

recover restricted classes of properties and are not “complete.”

I Different domains necessitate different classes of interest:
I Software engineering:

G (lock → F release lock)

I Metabolic pathways:
G (↑ protA U ↓ protB)

I Currently would have to use different techniques/approaches
to handle per-domain properties. In more complex domains,
multiple techniques would be required to cover the span of all
“interesting” properties.

I Would like to mine properties from a larger space of more
interesting properties, such as all of LTL or CTL.

M C   O
I Model checking traditionally answers “does model M |= φ?”

I Can modify this to ask “does data stream d satisfy property
φ?”

I Equivalent to verifying if one particular execution trace of M

(path through the program’s state machine) complies with φ.

K :
Performing verification of property φ over a set of
data streams generated by a model M gives a good
indication if M |= φ.

I Can use existing model checking algorithms/solvers for data
stream verification (e.g. NuSMV [4]). Simplicity of data stream
structure aids in efficiency of this model checking.

I Simulators could also be used (e.g. BioNetGen [3]).

L  D S
I Given a hypothesis property φ, we can assign it a fitness

(potential) based upon its success in satisfying each of the data
streams.

I This fitness can help guide our search through the hypothesis
space (such as space of all LTL formulas).

S/H N

I Consider the set of all data streams D capable of being emitted
from a model M.

I Practically, we would only have a sample of streams from D

that have been observed.

I Biasing of this sample can lead to interesting situations. How
is it biased?
I Of all possible starting conditions, only some may be observed: draw

firm conclusions for only this class of scenarios.

I What about noise introduced by erroneous/buggy systems? Or an
adaptation to the underlying process for a fraction of the streams?

I R
I Currently using a genetic programming approach to search

space of possible CTL solutions.

I Success for recovering properties on small examples such as:
I a U b
I a → F b

I Investigating impact of noise on results, as well as scaling up
to larger applications (e.g. software systems, metabolic
pathways) and more complex patterns.

R
[1] Christopher Ackermann, Rance Cleaveland, Samuel Huang, Arnab Ray,

Charles P. Shelton, and Elizabeth Latronico.
Automatic requirement extraction from test cases.
In RV, pages 1–15, 2010.

[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
Mining association rules between sets of items in large databases.
In SIGMOD ’93: Proceedings of the 1993 ACM SIGMOD international conference
on Management of data, pages 207–216, New York, NY, USA, 1993. ACM.

[3] Michael L. Blinov, Jin Yang, James R. Faeder, and William S. Hlavacek.
Graph theory for rule-based modeling of biochemical networks.
pages 89–106, 2006.

[4] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella.
Nusmv 2: An opensource tool for symbolic model checking.
In CAV, pages 359–364, 2002.

[5] David Lo, Siau-Cheng Khoo, and Chao Liu.
Mining past-time temporal rules from execution traces.
In WODA, pages 50–56, 2008.

The Institute for Systems Research – University of Maryland, College Park NSF – Expeditions in Computing


