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EXPANDING EXPRESSIVENESS

SAMPLING/HANDLING NOISE

~ Data streams are pervasive! ~ Previous work towards mining properties, (e.g. [5]), but all » Consider the set of all data streams D capable of being emitted
recover restricted classes of properties and are not “complete.” from a model M.

» Many result from outputs of structured processes

» Different domains necessitate different classes of interest: :
» S » Practically, we would only have a sample of streams from D
- < >~ Software engineering:
that have been observed.
G (lock — Frelease lock)

» Metabolic pathways: » Biasing of this sample can lead to interesting situations. How
G (] protA U | protB) is it biased?
» Of all possible starting conditions, only some may be observed: draw
_ » Currently would have to use different techniques/approaches tirm conclusions for only this class of scenarios.
to handle per-domain properties. In more complex domains, » What about noise introduced by erroneous/buggy systems? Or an
(a) Software engineering (b) Metabolic pathways multiple techniques would be required to cover the span of all adaptation to the underlying process for a fraction of the streams?

: . “interesting” properties.
» Question: Can we reason about a process’s internal structure

via reasoning over these outputs? » Would like to mine properties from a larger space of more INITIAL RESULTS

interesting properties, such as all of LTL or CTL.

» Currently using a genetic programming approach to search
EARLY EFFORTS space of possible CTL solutions.
MoDEL CHECKING AS AN ORACLE . .
» Success for recovering properties on small examples such as:

»alUb
»a—FbD

» Pilot study [1]: real-time recovery of invariants from execution
traces of known programs in the automotive domain.

» Model checking traditionally answers “does model M = ¢?”

» Investigating impact of noise on results, as well as scaling up

» Used combination of data mining-based techniques [2] and » Can modify this to ask “does data stream d satisfy property

Instrument-Based Verification (IBV) for discovering rules $?” to larger applications (e.g. software systems, metabolic
based on set of test cases (input output pairs) from a pathways) and more complex patterns.
Matlab/5imulink model: » Equivalent to verifying if one particular execution trace of M
Design (path through the program’s state machine) complies with ¢.
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