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PROBLEM STATEMENT
The goal is to find an efficient data representation for simulating cell movement. The approach is
to adopt kinetic data structures and tree structures from computer video games to speed up collision
detection in simulations using the Bead-Spring model .

BACKGROUND
To simulate cell movement, traditional lattice-based methods, such as Cellular Potts Model (CPM)
based simulations, split the cell into voxels of the same size, and compute the movement of each
voxel and its interactions with neighbors separately. The proposed Bead-Spring model views a cell
like a Tensegrity structure, which can model the cytoskeleton inside a cell. The Bead-Spring model
describes a cell as a set of beads connected by a set of springs. The springs mimic the filaments of
the cytoskeleton system, and the beads are the connecting points. Each simulation step involves one
bead. Compared to the lattice-based model, in the Bead-Spring model, there are fewer simulation
objects for each cell, and both short range and long range interactions can be handled, although a
more complex data structure means more overhead.

COLLISION

Red bead collides with other
triangles.

The major challenge for the Bead-Spring model is to determine
whether two cells have physical interactions. As the cells scatter
randomly in the space, cell protrusion and rotation may lead to a
collision or penetration of one cell by another. The problem is to
detect such an event.
This problem has been addressed in the field of computer graphics,
specifically in work on representing motion of solid objects. The
problem can be broken down into two problems: 1) Given a trian-
gle, how to determine a small set of triangles that might collide with
it; 2) Given the motion in a collection of objects, how to determine
when the data structure representing them needs to be changed.
The answer to the first problem is to use of appropriate tree structures to organize triangles in 3D
space to locate the neighboring triangles as fast as possible. The answer to the second problem is to
use recent ideas from proposals for kinetic data structures to maintain their validity when the objects
in them move.

TREE STRUCTURES FOR REPRESENTING MOVING OBJECTS
There are several tree data structures for modeling moving objects, including BSP tree, K-D tree,
and R-tree. Here we discuss BSP tree and K-D tree.

Binary Space Partitioning (BSP)[1] splits a
scene into two recursively, until the objects in
a partition can be handled individually. In our
case the stopping criterion is that the number of
triangles in the leaf partitions are small enough
to be tested by enumeration. In 3D space at each
step a plane is chosen to split a 3D object’s sur-
faces. The optimization goal is to make the tree
balanced.

A 2D example of Binary Space Partition

K-dimensional (K-D) tree[3] is simpler than
the complex BSP tree. For a K-D tree , each
tree node is associated with a dimension, and a
splitting plane perpendicular to the axis of the
dimension.

A 2D example of K-D Tree with a naive splitting
strategy that splits the space half by half each time

Compared to BSP tree, K-D tree is easier to con-
struct and analyze, while providing a compara-
ble performance.

MAINTAIN THE TREE FOR KINETIC SCENE
As the tree structure is associated with the positions of the triangles in 3D space, we may need
to update the tree structure when cell moves. We do this by maintaining a set of certificates for
each triangle.[2] If the movement of a triangle violates a certificate for example, by moving past a
splitting plane), then we do the update.
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